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Abstract This paper addresses the design of a network of observation locations
in a spatial domain that will be used to estimate unknown parameters of a distrib-
uted parameter system. We consider a setting where we are given a finite number
of possible sites at which to locate a sensor, but cost constraints allow only some
proper subset of them to be selected. We formulate this problem as the selection
of the gauged sites so as to maximize the log-determinant of the Fisher information
matrix associated with the estimated parameters. The search for the optimal solution
is performed using the branch-and-bound method in which an extremely simple and
efficient technique is employed to produce an upper bound to the maximum objective
function. Its idea consists in solving a relaxed problem through the application of a
simplicial decomposition algorithm in which the restricted master problem is solved
using a multiplicative algorithm for optimal design. The use of the proposed approach
is illustrated by a numerical example involving sensor selection for a two-dimensional
convective diffusion process.

Keywords Sensor location ·Distributed parameter systems ·Optimum
experimental design · Branch-and-bound · Simplicial decomposition

1 Introduction and notation

1.1 Sensor location for parameter estimation

One of the crucial design issues in parameter estimation of systems governed by par-
tial differential equations (PDEs), commonly termed ‘Distributed Parameter Systems’
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(DPSs), is the problem of where to locate the measurement sensors. The importance
of sensor planning has already been recognized in many application domains, e.g., air
quality monitoring systems, groundwater-resources management, recovery of valu-
able minerals and hydrocarbon, model calibration in meteorology and oceanography,
chemical engineering, hazardous environments, and smart materials (Nehorai et al.
1995; Porat and Nehorai 1996; Jeremić and Nehorai 1998; 2000; Navon 1997; Daescu
and Navon 2004; Christofides 2001; Banks et al. 1996; Sun 1994; Uciński 2005). The
operation and control of such systems usually requires precise information on the
parameters which condition the accuracy of the underlying mathematical model, but
that information is only available through a limited number of possibly expensive
sensors. Over the past years, this limitation has stimulated laborious research on the
development of strategies for efficient sensor placement [for reviews, see papers (Ku-
brusly and Malebranche 1985; van de Wal and de Jager 2001) and comprehensive
monographs (Uciński 2005; 1999)]. Nevertheless, although the need for systematic
methods was widely recognized, most techniques communicated by various authors
usually rely on exhaustive search over a predefined set of candidates and the com-
binatorial nature of the design problem is taken into account very occasionally (van
de Wal and de Jager 2001). Needless to say that this approach, which is feasible for a
relatively small number of possible locations, soon becomes useless as the number of
possible location candidates increases.

1.2 Previous work

Exceptions to this naive approach constitute the works originating in statistical opti-
mum experimental design (Fedorov and Hackl 1997; Pázman 1986; Pukelsheim 1993;
Walter and Pronzato 1997; Atkinson and Donev 1992; Uciński and Bogacka 2005;
Uciński and Atkinson 2004) and its extensions to models for dynamic systems, espe-
cially in the context of the optimal choice of sampling instants and input signals
(Goodwin and Payne 1977; Titterington 1980; Ljung 1999; Gevers 2005; Hjalmarsson
2005). In this vein, various computational schemes have been developed to attack
directly the original problem or its convenient approximation. The adopted optimi-
zation criteria are essentially the same, i.e., various scalar measures of performance
based on the Fisher information matrix (FIM) associated with the parameters to be
identified are maximized. The underlying idea is to express the goodness of parameter
estimates in terms of the covariance matrix of the estimates. For sensor-location pur-
poses, one assumes that an unbiased and efficient (or minimum-variance) estimator is
employed. This leads to a great simplification since the Cramér–Rao lower bound for
the aforementioned covariance matrix is merely the inverse of the FIM, which can be
computed with relative ease, even though the exact covariance matrix of a particular
estimator is very difficult to obtain.

As regards dynamic DPSs, the first treatment of this type for the sensor-loca-
tion problem was proposed by Uspenskii and Fedorov (1975) who maximized the
D-optimality criterion, being the determinant of the FIM associated with the estimated
parameters characterizing the source term in a simple one-dimensional linear diffu-
sion equation. The authors observed that the linear dependence of the observed
outputs on these parameters makes it possible to directly apply the machinery of
optimum experimental design theory. The delineated approach was extended by
Rafajłowicz (1981) to cover a class of DPSs described by linear hyperbolic equations
with known eigenfunctions and unknown eigenvalues. The aim was to find conditions
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for the optimality of the measurement design and the spectral density of the stochastic
input. It was indicated that common numerical procedures from classical experimental
design for linear regression models could be adopted to find optimal sensor location.
Moreover, the demonstrated optimality conditions imply that the optimal input com-
prises a finite number of sinusoidal signals and that optimal sensor positions are not
difficult to find in some cases. A similar problem was studied in (Rafajłowicz 1983)
in a more general framework of DPSs which can be described in terms of Green’s
functions.

Over the past two decades, this methodology has been substantially refined to
extend its applicability. A comprehensive treatment of both theoretical and algorith-
mic aspects of the resulting sensor location strategies is contained in the monograph
(Uciński 2005). The potential of the approach for generalizations was exploited, e.g.,
by Patan and Patan (2005) who developed a fault detection scheme for DPSs based
on the maximization of the power of a parametric hypothesis test regarding the nom-
inal state of a given DPS. The approach based on maximization of the determinant
of the appropriate FIM is by no means restricted to theoretical considerations and
there are examples which do confirm its effectiveness in practical applications. Thus,
in (Munack 1984) a given number of stationary sensors were optimally located using
nonlinear programming techniques for a biotechnological system consisting of a bub-
ble column loop fermenter. On the other hand, Sun (1994) advocates using optimum
experimental design techniques to solve inverse problems in groundwater modeling.
How to monitor the water quality around a landfill place is an example of such a net-
work design. Nonlinear programming techniques are also used there to find numerical
approximations to the respective exact solutions.

A similar approach was used in (Kammer 1990; 1992) for on-orbit modal identifica-
tion of large space structures. Although the respective models are not PDEs, but their
discretized versions obtained through the finite-element method, the proposed solu-
tions can still be of interest owing to the striking similitude of both the formulations.
A fast and efficient approach was delineated for reducing a relatively large initial
candidate sensor-location set to a much smaller optimum set which retains the linear
independence of the target modes and does not lead to a substantial deterioration in
the accuracy of modal-response estimates, which is quantified by the determinant of
the FIM. Some improvements on this approach by incorporating basic elements of
tabu search were proposed by Kincaid and Padula (2002).

A related optimality criterion was given by Point et al. (1996) who investigated
maximization of the Gram determinant being a measure of the independence of the
sensitivity functions evaluated at sensor locations. The authors argue that such a pro-
cedure guarantees that the parameters are identifiable and the correlation between
the sensor outputs is minimized. The form of the criterion itself resembles the D-
optimality criterion, but the counterpart of the FIM takes on much larger dimensions,
which suggests that the approach may involve more cumbersome calculations. Nev-
ertheless, the delineated technique was successfully applied to a laboratory-scale,
catalytic fixed-bed reactor (Vande Wouwer et al. 1999).

At this juncture, it should be noted that spatial design methods related to the design
of monitoring networks are also of great interest to statisticians and a vast amount
of literature on the subject already exists (Müller 2001; Nychka et al. 1998; Nychka
and Saltzman 1998) contributing to the research field of spatial statistics (Cressie
1993) motivated by practical problems in agriculture, geology, meteorology, environ-
mental sciences, and economics. However, the models considered in the statistical
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literature are quite different from the dynamic models described by PDEs discussed
here. Spatiotemporal data are not considered in this context and the main purpose
is to model the spatial process by a spatial random field, incorporate prior knowl-
edge and select the best subset of points of a desired cardinality to best represent
the field in question. The motivation is a need to interpolate the observed behav-
ior of a process at unobserved spatial locations, as well as to design a network of
optimal observation locations which allows an accurate representation of the pro-
cess. The field itself is modelled by some multivariate distribution, usually Gaussian
(Armstrong 1998). Designs for spatial trend and variogram estimation can be consid-
ered. The basic theory of optimal design for spatial random fields is outlined in the
excellent monograph by Müller (2001) which bridges the gap between spatial statistics
and classical optimum experimental design theory. The optimal design problem can
also be formulated in terms of information-based criteria whose application amounts
to maximizing the amount of information (of the Kullback–Leibler type) to be gained
from an experiment (Caselton and Zidek 1984; Caselton et al. 1992). However, the
applicability of all those fine statistical results in the engineering context discussed
here is not clear for now and more detailed research into this direction should be pur-
sued in the near future (specifically, generalizations regarding time dynamics are not
obvious).

Let us remark that an appealing alternative to stationary sensors is to apply
spatially movable ones, which leads to the so-called continuous scanning observa-
tions. The complexity of the resulting optimization problem is compensated by a
number of benefits. Specifically, sensors are not assigned to fixed positions which
are optimal only on the average, but are capable of tracking points which pro-
vide at a given time instant best information about the parameters to be iden-
tified. Consequently, by actively reconfiguring a sensor system we can expect the
minimal value of an adopted design criterion to be lower than the one for the sta-
tionary case. What is more, technological advances in communication systems and
the growing ease in making small, low power and inexpensive mobile systems now
make it feasible to deploy a group of networked vehicles in a number of environ-
ments (Ögren et al. 2004; Chong and Kumar 2003; Sinopoli et al. 2003; Cassandras
and Li 2005; Martínez and Bullo 2006). In the seminal article (Rafajłowicz 1986),
the D-optimality criterion is considered and an optimal time-dependent measure is
sought, rather than the trajectories themselves. On the other hand, Uciński (2000;
2005; Uciński and Korbicz 2001), apart from generalizations of Rafajłowicz’s results,
develops some computational algorithms based on the FIM. He reduces the prob-
lem to a state-constrained optimal-control one for which solutions are obtained via
the methods of successive linearizations which is capable of handling various con-
straints imposed on sensor motions. In turn, the work (Uciński and Chen 2005) was
intended as an attempt to properly formulate and solve the time-optimal problem
for moving sensors which observe the state of a DPS so as to estimate some of its
parameters.

1.3 Our results

The aim of the research reported here was to develop a practical approach to sensor
selection which, while being independent of a particular model of the dynamic DPS in
question, would be versatile enough to cope with practical monitoring networks con-
sisting of many stationary sensors. Specifically, we consider N possible sites at which
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to locate a sensor, but limitations on the number of sensors at our disposal allow
only n of them (typically, n is much smaller than N) to be selected. Consequently, the
problem is to divide the N available sites between n gauged sites and the remaining
N–n ungauged sites so as to maximize the determinant of the FIM associated with the
parameters to be estimated. Since selecting the best subset of sites to locate the sen-
sors constitutes an inherently discrete large-scale resource allocation problem whose
solution may be prohibitively time-consuming, an efficient guided search algorithm
based on the branch-and-bound (BB) method is developed, which implicitly enumer-
ates all the feasible sensor configurations, using relaxed optimization problems that
involve no integer constraints.

Obviously, this idea is not novel, since BB constitutes one of the most frequent
approaches to solve discrete optimization problems and it has indeed been used in
the context of network design, cf., e.g., (Boer et al. 2001). The main contribution
of this paper consists in the development of a simple, yet powerful, computational
scheme to obtain upper bounds to the optimal values of the D-optimality criterion for
the restricted problems. These bounds are obtained by relaxing the 0–1 constraints
on the design variables, thereby allowing them to take any value in the interval [0, 1]
and resulting in a concave problem of determinant maximization over the set of all
linear combinations of a finite number of nonnegative definite matrices, subject to
additional linear constraints on the coefficients of those combinations. In order to
solve it numerically, optimality conditions are first derived and discussed, because
they take a surprisingly simple form involving an interesting separability principle for
the set of locations at which the weights achieve their upper bounds and the ones
at which the weights are zero. Then an original algorithm is proposed which can
be interpreted as a simplicial decomposition one with the restricted master problem
solved by an uncomplicated multiplicative weight optimization algorithm which is
adapted here to take account of constituent matrices possibly having ranks greater
than one, as opposed to the standard assumption made in the optimum experimental
design literature. The resulting procedure is guaranteed to produce iterates converg-
ing to the solution of the relaxed restricted problem. To the best of our knowledge,
the proposed combination of the simplicial decomposition algorithm with the known
multiplicative algorithm for constructing optimizing probability distributions has not
been investigated yet. To illustrate the use of our algorithm, we include implemen-
tation details and some numerical experience on a sensor network design problem
regarding a two-dimensional convective diffusion process.

The paper is organized as follows. Section 2 states formally the sensor network
design problem as a discrete resource allocation problem. The BB algorithm for its
solution is discussed in Sect. 3. Section 4 develops the simplicial decomposition algo-
rithm for computing upper bounds required by the branching rule. In Sect. 5, we
report the numerical results obtained by applying the algorithm described in Sect. 3
on the optimal design application. We conclude in Sect. 6 with some comments on
related open problems. The proofs of the presented theoretical results are contained
in the Appendices.

1.4 Conventions and notation

Our notation is more or less standard. Given a set H, |H|, and H̄, signify its cardi-
nality and closure, respectively. We use R to denote the set of real numbers and R+
to denote the set of nonnegative real numbers. The n-dimensional Euclidean vector
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space is denoted by R
n, and the Euclidean matrix space of real matrices with n rows

and k columns is denoted by R
m×k. We will write S

n for the subspace of R
n×n con-

sisting of all symmetric matrices. The identity matrix of order n is denoted by En.
In S

n two sets are of special importance: the cone of nonnegative definite matrices
and the cone of positive definite matrices, denoted by S

n+ and S
n++, respectively. The

curly inequality symbol� and its strict form� are used to denote the Loewner partial
ordering of symmetric matrices: For A, B ∈ S

n, we have

A � B⇐⇒ A− B ∈ S
n+,

A � B⇐⇒ A− B ∈ S
n++.

We call a point of the form α1u1 + · · · + α�u�, where α1 + · · · + α� = 1 and αi ≥ 0,
i = 1, . . . , �, a convex combination of the points u1, . . . , u� (it can be thought of as a
mixture or a weighted average of the points, with αi the fraction of ui in the mixture).
Given a set of points U, co(U) stands for its convex hull, i.e., the set of all convex
combinations of elements of U,

co(U) =
{

�∑
i=1

αiui

∣∣∣ ui ∈ U, αi ≥ 0, i = 1, . . . , �;
�∑

i=1

αi = 1, � = 1, 2, 3, . . .

}
.

The probability (or canonical) simplex in R
n is defined as

Pn = co
({

e1, . . . , en
}) =

{
p ∈ R

n+
∣∣∣ n∑

i=1

pi = 1

}
,

where ej is the usual unit vector along the j-th coordinate of R
n.

Finally, recall that for any A ∈ R
n×n which may depend on a parameter β, there

holds

∂

∂β
ln det(A) = trace

(
A−1 ∂A

∂β

)

whenever A is nonsingular.

2 Sensor location problem

Consider a bounded spatial domain � ⊂ R
d with sufficiently smooth boundary �, a

bounded time interval T = (0, tf ], and a DPS whose scalar state at a spatial point
x ∈ �̄ ⊂ R

d and time instant t ∈ T̄ is denoted by y(x, t). Mathematically, the system
state is governed by the PDE

∂y
∂t
= F

(
x, t, y, θ

)
in �× T, (1)

where F is a well-posed, possibly nonlinear, differential operator which involves first-
and second-order spatial derivatives and may include terms accounting for forcing
inputs specified a priori. The PDE (1) is accompanied by the appropriate boundary
and initial conditions

B(x, t, y, θ) = 0 on � × T, (2)

y = y0 in �× {t = 0}, (3)
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respectively, B being an operator acting on the boundary � and y0 = y0(x) a given
function. Conditions (2) and (3) complement (1) such that the existence of a suffi-
ciently smooth and unique solution is guaranteed. We assume that the forms of L and
B are given explicitly up to an m-dimensional vector of unknown constant parameters
θ which must be estimated using observations of the system. The implicit dependence
of the state y on the parameter vector θ will be be reflected by the notation y(x, t; θ).

In what follows, we consider the discrete-continuous observations provided by n
stationary pointwise sensors, namely

z�m(t) = y(x�, t; θ)+ ε(x�, t), t ∈ T, (4)

where z�m(t) is the scalar output and x� ∈ X stands for the location of the �th sensor
(� = 1, . . . , n), X signifies the part of the spatial domain � where the measurements
can be made and ε(x�, t) denotes the measurement noise. This relatively simple con-
ceptual framework involves no loss of generality since it can be easily generalized to
incorporate, e.g., multiresponse systems or inaccessibility of state measurements, cf.
(Uciński 2005, p. 95).

It is customary to assume that the measurement noise is zero-mean, Gaussian, spa-
tial uncorrelated and white (Quereshi et al. 1980; Omatu and Seinfeld 1989; Amouroux
and Babary 1988), i.e.,

E
{
ε(x�, t)ε(x�

′
, t′)

} = σ 2δ��′δ(t − t′), (5)

where σ 2 defines the intensity of the noise, δij and δ( · ) standing for the Kronecker
and Dirac delta functions, respectively. Although white noise is a physically impossible
process, it constitutes a reasonable approximation to a disturbance whose adjacent
samples are uncorrelated at all time instants for which the time increment exceeds
some value which is small compared with the time constants of the DPS. A rigorous
formulation for a time-correlated setting (cf. Appendix C1 of (Uciński 2005)) is well
beyond the mathematical framework of this paper, but the attendant difficulties are
mainly technical and do not substantially affect the basic results to be obtained. What
is more, the white-noise assumption is consistent with most of the literature on the
subject.

The most widely used formulation of the parameter estimation problem is as
follows: Given the model (1)–(3) and the outcomes of the measurements z�m( · ),
� = 1, . . . , n, estimate θ by θ̂ , a global minimizer of the output least-squares error
criterion

J (ϑ) =
n∑
�=1

∫
T

{
z�m(t)− y(x�, t;ϑ)

}2
dt, (6)

where y( · , · ;ϑ) denotes the solution to (1)–(3) for a given value of the parameter
vector ϑ . In practice, a regularized version of the above problem is often considered
by adding to J (ϑ) a term imposing stability or a-priori information or both (Banks
and Kunisch 1989; Vogel 2002).

Inevitably, the covariance matrix cov(θ̂) of the above least-squares estimator
depends on the sensor locations x�. This fact suggests that we may attempt to select
them so as to yield best estimates of the system parameters. To form a basis for the
comparison of different locations, a quantitative measure of the ‘goodness’ of par-
ticular sensor configurations is required. Such a measure is customarily based on the
concept of the FIM which is widely used in optimum experimental design theory for
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lumped systems (Fedorov and Hackl 1997; Pázman 1986; Pukelsheim 1993; Walter
and Pronzato 1997; Atkinson and Donev 1992). In our setting, the FIM is given by
(Quereshi et al. 1980)

M(x1, . . . , xn) =
n∑
�=1

∫
T

g(x�, t)gT(x�, t)dt, (7)

where

g(x, t) =
[
∂y(x, t;ϑ)
∂ϑ1

, . . . ,
∂y(x, t;ϑ)
∂ϑm

]T

ϑ=θ0
(8)

stands for the so-called sensitivity vector, θ0 being a prior estimate to the unknown
parameter vector θ (Uciński 2005; Sun 1994; Rafajłowicz 1981; 1983). The rationale
behind this choice is the fact that, up to a constant scalar multiplier, the inverse of
the FIM constitutes a good approximation of cov(θ̂) provided that the time horizon
is large, the nonlinearity of the model with respect to its parameters is mild, and
the measurement errors are independently distributed and have small magnitudes
(Walter and Pronzato 1997; Fedorov and Hackl 1997).

As for a specific form of �, various options exist (Walter and Pronzato 1997;
Fedorov and Hackl 1997; Atkinson and Donev 1992), but the most popular criterion,
called the D-optimality criterion, is the log-determinant of the FIM:

�(M) = log det(M). (9)

The resulting D-optimum sensor configuration leads to the minimum volume of the
uncertainty ellipsoid for the estimates.

The introduction of an optimality criterion renders it possible to formulate the
sensor location problem as maximization of the performance measure

R(x1, . . . , xn) := �[
M(x1, . . . , xn)

]
(10)

with respect to x�, � = 1, . . . , n belonging to the admissible set X. This apparently sim-
ple formulation may lead to the conclusion that the only question remaining is that
of selecting an appropriate solver from a library of numerical optimization routines.
Unfortunately, an in-depth analysis reveals complications which accompany this way
of thinking.

A key difficulty in developing successful numerical techniques for sensor location
is that the number of sensors to be placed in a given region may be quite large. For
example, in the research carried out to find spatial predictions for ozone in the Great
Lakes of US, measurements made by approximately 160 monitoring stations were
used (Nychka and Saltzman 1998). When trying to treat the task as a constrained non-
linear programming problem, the actual number of variables is even doubled, since
the position of each sensor is determined by its two spatial coordinates, so that the
resulting problem is rather of large scale. What is more, a desired global extremum
is usually hidden among many poorer local extrema. Consequently, to directly find a
numerical solution may be extremely difficult. Additionally, a technical complication
might also be the sensor clusterization which constitutes a price to pay for the sim-
plifying assumption that the measurement noise is spatially uncorrelated. This means
that in an optimal solution different sensors often tend to take measurements at one
point, and this is acceptable in applications rather occasionally.
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In the literature, a common remedy for the last predicament is to guess a priori a set
of N possible candidate locations, where N > n, and then to seek the best subset of n
locations from among the N possible, so that the problem is then reduced to a combi-
natorial one. In other words, the problem is to divide the N available sites between n
gauged sites and the remaining N–n ungauged sites so as to maximize the determinant
of the FIM associated with the parameters to be estimated. This formulation will be
also adopted here.

Specifically, let xi, i = 1, . . . , N denote the positions of sites where sensors can
potentially be placed. Now that our design criterion has been established, the prob-
lem is to find an optimal allocation of n available sensors to xi, i = 1, . . . , N so as
to maximize the value of the design criterion incurred by the allocation. In order to
formulate this mathematically, introduce for each possible location xi a variable vi
which takes the value 1 or 0 depending on whether a sensor is or is not located at xi,
respectively. The FIM in (7) can then be rewritten as

M(v1, . . . , vN) =
N∑

i=1

viMi, (11)

where

Mi =
∫

T
g(xi, t)gT(xi, t)dt. (12)

It is straightforward to verify that the m × m matrices Mi are nonnegative definite
and, therefore, so is M(v1, . . . , vN).

Then our design problem takes the form:
Problem P Find the sequence v = (v1, . . . , vN) to maximize

P(v) = log det
(
M(v)

)
(13)

subject to the constraints

N∑
i=1

vi = n, (14)

vi = 0 or 1, i = 1, . . . , N. (15)

This constitutes a 0–1 integer programming problem which necessitates an inge-
nious solution. In what follows, we propose to solve it using the BB method which is
a standard technique to solve integer-programming problems.

3 Solution by branch-and-bound

3.1 General outline

The BB constitutes a general algorithmic technique for finding optimal solutions of
various optimization problems, especially discrete or combinatorial (Floudas 2001;
Bertsekas 1999). If applied carefully, it can lead to algorithms that run reasonably fast
on average.

Principally, the BB method is a tree-search algorithm combined with a rule for
pruning subtrees. Suppose we wish to maximize an objective function P(v) over a
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finite set V of admissible values of the argument v called the feasible region. The
BB then progresses by iteratively applying two procedures: branching and bounding.
Branching starts with smartly covering the feasible region by two or more smaller
feasible subregions (ideally, partitioning into disjoint subregions). It is then repeated
recursively to each of the subregions until no more division is possible, which leads to
a progressively finer partition of V. The consecutively produced subregions naturally
generate a tree structure called the BB tree. Its nodes correspond to the constructed
subregions, with the feasible set V as the root node and the singleton solutions

{
v
}
,

v ∈ V as terminal nodes. In turn, the core of bounding is a fast method of finding upper
and lower bounds to the maximum value of the objective function over a feasible sub-
domain. The idea is to use these bounds to economize computation by eliminating
nodes of the BB tree that have no chance of containing an optimal solution. If the
upper bound for a subregion VA from the search tree is lower than the lower bound
for any other (previously examined) subregion VB, then VA and all its descendant
nodes may be safely discarded from the search. This step, termed pruning, is usually
implemented by maintaining a global variable that records the maximum lower bound
encountered among all subregions examined so far. Any node whose upper bound is
lower than this value need not be considered further and thereby can be eliminated.
It may happen that the lower bound for a node matches its upper bound. That value is
then the maximum of the function within the corresponding subregion and the node is
said to be solved. The search proceeds until all nodes have been solved or pruned, or
until some specified threshold is met between the best solution found and the upper
bounds on all unsolved problems.

In what follows, we will use the symbol I to denote the index set
{
1, . . . , N

}
of pos-

sible sensor locations. Our implementation of BB for Problem P involves the partition
of the feasible set

V =
{
(v1, . . . , vN)

∣∣∣ N∑
i=1

vi = n, vi = 0 or 1, ∀i ∈ I

}
, (16)

into subsets. It is customary to select subsets of the form (Bertsekas 1999):

V(I0, I1) =
{
v ∈ V | vi = 0, ∀i ∈ I0, vi = 1, ∀i ∈ I1

}
, (17)

where I0 and I1 are disjoint subsets of I. Consequently, V(I0, I1) is the subset of V such
that a sensor is placed at the locations with indices in I1, no sensor is placed at the
locations with indices in I0, and a sensor may or may not be placed at the remaining
locations.

Each subset V(I0, I1) is identified with a node in the BB tree. The key assumption
in the BB method is that for every nonterminal node V(I0, I1), i.e., the node for which
I0 ∪ I1 �= I, there is an algorithm that determines an upper bound P̄(I0, I1) to the
maximum design criterion over V(I0, I1), i.e.,

P̄(I0, I1) ≥ max
v∈V(I0,I1)

P(v), (18)

and a feasible solution v ∈ V for which P(v) can serve as a lower bound to the max-
imum design criterion over V. We may compute P̄(I0, I1) by solving the following
relaxed problem:
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Problem R(I0, I1) Find the sequence v̄ to maximize (13) subject to the constraints

N∑
i=1

vi = n, (19)

vi = 0, i ∈ I0, (20)

vi = 1, i ∈ I1, (21)

0 ≤ vi ≤ 1, i ∈ I \ (I0 ∪ I1). (22)

In Problem R(I0, I1) all 0–1 constraints on the variables vi are relaxed by allowing
them to take any value in the interval [0, 1], except that the variables vi, i ∈ I0 ∪ I1 are
fixed at either 0 or 1. A simple and efficient method for its solution is given in Sect. 4.
As a result of its application, we set P̄(I0, I1) = P(v̄).

As for v, we can specify it as the best feasible solution (i.e., an element of V) found
so far. If no solution has been found yet, we can either set the lower bound to −∞,
or use an initial guess about the optimal solution (experience provides evidence that
the latter choice leads to much more rapid convergence).

3.2 Branching rule and ultimate algorithm

The result of solving Problem R(I0, I1) can serve as a basis to construct a branching
rule for the binary BB tree. We adopt here the approach in which the node/subset
V(I0, I1) is expanded (i.e., partitioned) by first picking out all fractional values from
among the values of the relaxed variables, and then rounding to 0 and 1 a value which
is the most distant from both 0 and 1. Specifically, we apply the following steps:

(i) Determine

i = arg min
i∈I\(I0∪I1)

|vi − 0.5|. (23)

(In case there are several minimizers, randomly pick one of them.)
(ii) Partition V(I0, I1) into V(I0∪

{
i

}
, I1) and V(I0, I1∪

{
i

}
)whereby two descendants

of the node in question are defined.

A recursive application of the branching rule starts from the root of the BB tree,
which corresponds to the trivial subset V(∅,∅) = V and the fully relaxed problem.
Each node of the BB tree corresponds to a continuous relaxed problem, R(I0, I1),
while each edge corresponds to fixing one relaxed variable at 0 or 1.

The above scheme has to be complemented with a search strategy to incrementally
explore all the nodes of the BB tree. Here we use a common depth-first technique
(Reinefeld 2001; Russell and Norvig 2003) which always expands the deepest node in
the current fringe of the search tree. The reason behind this decision is that the search
proceeds immediately to the deepest level of the search tree, where the nodes have
no successors (Gerdts 2005). In this way, lower bounds on the optimal solution can be
found or improved as fast as possible.

A recursive version of the resulting depth-first BB is implemented in Algorithm 1.
The operators involved in this implementation are as follows:



302 J Glob Optim (2007) 39:291–322

• Singularity-Test(I0, I1) returns true only if expansion of the current node will
result in a singular FIM, see Sect. 4.2 for details.
• Relaxed-Solution(I0, I1) returns a solution to Problem R(I0, I1).
• Det-FIM(v) returns the log-determinant of the FIM corresponding to v.
• Integral-Test(v) returns true only if the current solution v is integral.
• Index-Branch(v) returns the index defined by (23).

Algorithm 1 A recursive version of the depth-first BB method. It uses two global
variables, LOWER and v_best, which are respectively the maximal value of the FIM
determinant over feasible solutions found so far and the solution at which it is attained.
1: procedure Recursive-DFBB(I0, I1)
2: if |I0| > N − n or |I1| > n then
3: return � Constraint (19) would be violated
4: end if
5: if Singularity-Test(I0, I1) then
6: return �Only zero determinants can be expected
7: end if
8: v_relaxed← Relaxed-Solution(I0, I1)
9: det_relaxed← Det-FIM(v_relaxed )

10: if det_relaxed ≤ LOWER then
11: return � Pruning
12: else if Integral-Test(v_relaxed ) then
13: v_best← v_relaxed
14: LOWER← det_relaxed
15: return � Relaxed solution is integral
16: else
17: i ← Index-Branch(v_relaxed ) � Partition into two descendants
18: Recursive-DFBB(I0 ∪

{
i

}
, I1)

19: Recursive-DFBB(I0, I1 ∪
{
i

}
)

20: end if
21: end procedure

4 Optimality conditions and a simplicial decomposition algorithm for solving the
relaxed problem

4.1 Separability form of optimality conditions

The nonleaf nodes of the BB tree are processed by relaxing the original combinatorial
problem, which directly leads to Problem R(I0, I1). This section provides a detailed
exposition of a simplicial decomposition method which is particularly suited for its
solution.

For notational convenience, we replace the variables vi, i ∈ I \ (I0 ∪ I1) by wj,
j = 1, . . . , q, where q = |I \ (I0 ∪ I1)|, since there exists a bijection π from

{
1, . . . , q

}
to

I \ (I0 ∪ I1) such that wj = vπ(j), j = 1, . . . , q. Consequently, we obtain the following
formulation:
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Problem R′(I0, I1) Find w ∈ R
q to maximize

Q(w) = log det
(
G(w)

)
(24)

subject to the constraints

q∑
j=1

wj = r, (25)

0 ≤ wj ≤ 1, j = 1, . . . , q, (26)

where

r = n− |I1|, G(w) = A+
q∑

j=1

wjSj, A =
∑
i∈I1

Mi, Sj =Mπ(j), j = 1, . . . , q.

(27)

(Note that |I1| sensors have already been assigned to locations xi, i ∈ I1, and thus a
decision about the placement of r remaining sensors has to be made.)

In the sequel, W will stand for the set of all vectors w = (w1, . . . , wq) satisfying
(25) and (26). Note that it forms a polygon in R

q. Recall that the log-determinant is
concave and strictly concave over the cones S

m+ and S
m++, respectively, cf. (Pukelsheim

1993; Boyd and Vandenberghe 2004). Thus, the objective function (24) is concave
as the composition of the log-determinant with an affine mapping, see (Boyd and
Vandenberghe 2004, p. 79). We wish to maximize it over the polyhedral set W. If the
FIM corresponding to an optimal solution w is nonsingular, then an intriguing form
of the optimality conditions can be derived.

Proposition 1 Suppose that the matrix G(w) is nonsingular for some w ∈ W. The
vector w constitutes a global solution to Problem R′(I0, I1) if, and only if, there exists
a number λ such that

ϕ(j, w)

⎧⎪⎨
⎪⎩
≥ λ if wj = 1,

= λ if 0 < wj < 1,

≤ λ if wj = 0,

(28)

where

ϕ(j, w) = trace
[
G−1(w)Sj

]
, j = 1, . . . , q. (29)

Remark 1 The above result can be basically inferred by fitting Problem R′(I0, I1) into
the abstract setting of Theorem 1 of (Pronzato 2004) dealing with a very general case
of directly constrained probability measures. Here, however, we have obtained it in a
quite elementary manner, taking account of the specific form of our problem.

Proposition 1 reveals one characteristic feature of the optimal solutions, namely
that, when identifying them, the function ϕ turns out to be crucial and optimality
means separability of the components of w in terms of the values of this function.
Specifically, the values of ϕ( · , w) for the indices corresponding to the fractional com-
ponents of w must be equal to some constant λ, whereas for the components taking
the value 0 or the value 1 the values of ϕ( · , w)must be no larger and no smaller than
λ, respectively.
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4.2 Discarding singular information matrices

Note that the assumption that G(w) is nonsingular can be dropped, since there is a
very simple method to check whether or not the current relaxed problem will lead to
a FIM which is nonsingular.

Proposition 2 The FIM corresponding to the solution to Problem R′(I0, I1) is singular
if and only if so is G(w̄), where

w̄ = (r/q, . . . , r/q)︸ ︷︷ ︸
q times

. (30)

Consequently, a test of the singularity of the matrix G(w̄) = A+ r
q

∑q
j=1 Sj can be

built into the BB procedure in order to drop the corresponding node from further
considerations and forego the examination of its descendants. Otherwise, the vector
(r/q, . . . , r/q) may serve as a good starting point for the simplicial decomposition
algorithm outlined in what follows.

Remark 2 A solution to Problem R′(I0, I1) is not necessarily unique. Note, however,
that for nonsingular cases (after all, pruning discards such cases from further con-
sideration), the resulting FIM is unique. Indeed, Problem R′(I0, I1) can equivalently
be viewed as maximization of the log-determinant over the convex and compact set
of matrices M = {

G(w) | ∑q
j=1 wj = r, 0 ≤ wj ≤ 1, i = 1, . . . , q

}
. But the log-

determinant is strictly concave over the cone of positive-definite matrices, S
m++, which

constitutes the interior of S
m+ relative to S

m, and this fact implies the unicity of the
optimal FIM.

4.3 Simplicial decomposition scheme

Simplicial Decomposition (SD) constitutes an important class of methods for solving
large-scale continuous problems in mathematical programming with convex feasible
sets (von Hohenbalken 1977; Patriksson 2001; Bertsekas 1999). In the original frame-
work, where a concave objective function is to be maximized over a bounded polyhe-
dron, it iterates by alternately solving a linear programming subproblem (the so-called
column generation problem) which generates an extreme point of the polyhedron, and
a nonlinear restricted master problem (RMP) which finds the maximum of the objec-
tive function over the convex hull (a simplex) of previously defined extreme points.
This basic strategy of simplicial decomposition has appeared in numerous references
(Ventura and Hearn 1993; Hearn et al. 1985; 1987), where possible improvements and
extensions have also been discussed. A principal characteristic of an SD method is
that the sequence of successive solutions to the master problem tends to a solution to
the original problem in such a way that the objective function strictly monotonically
approaches its optimal value.

Problem R′(I0, I1) is perfectly suited for the application of the SD scheme. In this
case, it boils down to Algorithm 2. Here ∇Q(w) signifies the gradient of Q at w, and
it is easy to check that

∇Q(w) = [
trace

(
G−1(w)S1

)
, . . . , trace

(
G−1(w)Sq

)]T
. (31)
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Algorithm 2 Algorithm model for simplicial decomposition.
Step 0 (Initialization)

Set w(0) = (r/q, . . . , r/q) and Z(0) = {
w(0)

}
. Select 0 < ε � 1, a parameter used in the stopping

rule, and set k = 0.
Step 1 (Solution of the column generation subproblem)

Determine

z = arg max
w∈W
∇Q(w(k))T(w− w(k)). (32)

Step 2 (Termination check)
If ∇Q(w(k))T(z− w(k)) ≤ ε, then STOP and w(k) is optimal. Otherwise, set Z(k+1) = Z(k) ∪ {

z
}
.

Step 3 (Solution of the restricted master problem)
Find

w(k+1) = arg max
w∈co(Z(k+1))

Q(w) (33)

and purge Z(k+1) of all extreme points with zero weight in the expression of w(k+1) as a convex
combination of elements in Z(k+1). Increment k by one and go back to Step 1.

Since we deal with maximization of a concave function Q over a bounded poly-
hedral set W, the convergence of Algorithm 2 in a finite number of RMP steps is
automatically guaranteed (von Hohenbalken 1977; Bertsekas 1999, p. 221). Observe
that Step 3 implements the column dropping rule (Patriksson 2001), according to
which any extreme point with zero weight in the expression of w(k) as a convex com-
bination of elements in Z(k) is removed. This rule makes the number of elements in
successive sets Z(k) reasonably low.

The SD algorithm may be viewed as a form of modular nonlinear programming,
provided that one has an effective computer code for solving the restricted master
problem, as well as access to a code which can take advantage of the linearity of
the column generation subproblem (Hearn et al. 1987). The former issue will be
addressed in the next subsection, where an extremely simple and efficient multiplica-
tive algorithm for weight optimization will be discussed. In turn, the latter issue can
be easily settled, as in the linear programming problem of Step 1 the feasible region
W is defined by one equality contraint (25) and q bound constraints (26). At first
sight, its form might suggest that selecting a vertex of W which corresponds to the
greatest component of ∇Q(w(k)) would yield the desired solution z. However, it is
impossible to apply such a simple vertex-direction steepest-ascent technique since the
nonnegative weight values wj must sum up to r and, at the same time, they must not
exceed one. Consequently, the solution cannot be focused only on one direction and
z must be expressed as a linear combination of many vertices. Yet the simple form of
the constraint set W can still be exploited directly, since numerous techniques have
been proposed to achieve considerable speedup, ranging from improvements on the
simplex method (cf. its upper-bounding version described by Pierre (1969, p. 224) to
large-scale interior-point methods which are accessible in popular numerical packages
(cf. the primal-dual interior-point variant of Mehrotra’s predictor-corrector algorithm
implemented in Matlab’s Optimization Toolbox (MathWorks 2000), cf. (Nocedal and
Wright 1999).
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4.4 Multiplicative algorithm for the restricted master problem

Suppose that in the (k+ 1)-th iteration of Algorithm 2, we have

Z(k+1) = {
z1, . . . , zs

}
, (34)

possibly with s < k + 1 owing to the built-in deletion mechanism of points in Z(i),
1 ≤ i ≤ k, which did not contribute to the convex combinations yielding the cor-
responding iterates w(�). Step 3 of Algorithm 2 involves maximization of the design
criterion (24) over

co(Z(k+1)) =
{

s∑
�=1

α�z�
∣∣∣α� ≥ 0, � = 1, . . . , s,

s∑
�=1

α� = 1

}
. (35)

From the representation of any w ∈ co(Z(k+1)) as

w =
s∑
�=1

α�z�, (36)

or, in component-wise form,

wj =
s∑
�=1

α�z�,j, j = 1, . . . , q, (37)

z�,j being the jth component of z�, it follows that

G(w) = A+
q∑

j=1

wjSj =
s∑
�=1

α�

(
A+

q∑
j=1

z�,jSj

)
=

s∑
�=1

α�G(z�). (38)

From this, we see that the RMP can equivalently be formulated as the following
problem:
Problem PRMP Find the sequence of weights α = (α1, . . . ,αs) to maximize

T (α) = log det
(
H(α)

)
(39)

subject to the constraints

s∑
�=1

α� = 1, (40)

α� ≥ 0, � = 1, . . . , s, (41)

where

H(α) =
s∑
�=1

α�Q�, Q� = G(z�). (42)

Basically, since the constraints (40) and (41) define the probability simplex Ps in
R

s, i.e., a very nice convex feasible domain, it is intuitively appealing to determine
optimal weights using a numerical algorithm specialized for solving convex optimi-
zation problems. But another, much simpler technique can be employed to suitably
guide weight calculation. It fully exploits the specific form of the objective function
(39) by giving Problem PRMP an equivalent probabilistic formulation. Specifically, the
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nonnegativeness of the weights z�,j, j = 1, . . . , q and the nonnegative definiteness of
the matrices A and Sj, j = 1, . . . , q imply that Q� � 0, � = 1, . . . , q. Defining X as a
discrete random variable which may take values in the set

{
1, . . . , s

}
and treating the

weights α�, � = 1, . . . , s as the probabilities attached to its possible numerical values,
i.e.,

pX (�) = P(X = �) = α�, � = 1, . . . , s, (43)

we can interpret pX as the probability mass function (pmf) of X and H(α) =∑s
�=1 α�Q� in (39) as the P-weighted mean of the function Q : � �→ Q�. There-

fore, Problem PRMP can be thought of as that of finding a probability mass function
maximizing the log-determinant of the mean of Q. This formulation has captured
close attention in optimum experimental design theory, where various characteriza-
tions of optimal solutions and efficient computational schemes have been proposed
(Atkinson and Donev 1992; Fedorov and Hackl 1997; Walter and Pronzato 1997). In
particular, in the case of the D-optimality criterion studied here, we can prove the
following conditions for global optimality:

Proposition 3 Suppose that the matrix H(α) is nonsingular for some α ∈ Ps. The
vector α constitutes a global solution to Problem PRMP if and only if

ψ(�,α)

{
= m if α� > 0,
≤ m if α� = 0

(44)

for each � = 1, . . . , s, where

ψ(�,α) = trace
[
H−1(α)Q�

]
, � = 1, . . . , s. (45)

A very simple and numerically effective sequential procedure was devised and
analyzed in (Pázman 1986; Torsney 1988; Silvey et al. 1978; Torsney and Mandal 2001;
2004) for the case of rank-one matrices Q�, which was then extended to the general
case by Uciński (2005, p. 62). Its version adapted to the RMP proceeds as summarized
in Algorithm 3. Clear advantages here are ease of implementation and negligible
additional memory requirements.

The idea is reminiscent of the EM algorithm used for maximum likelihood esti-
mation (Lange 1999). The properties of this computational scheme are considered
in some detail in (Uciński 2005). Suffice it to say here that Algorithm 3 is globally
convergent regardless of the choice of initial weights (they must only be all nonzero
and correspond to a nonsingular FIM). Indeed, we have the following result (Uciński
2005 p. 65):

Proposition 4 Assume that
{
α(κ)

}
is a sequence of iterates constructed by Algorithm 3.

Then the sequence
{
T (α(κ))

}
is monotone increasing and

lim
κ→∞ T (α(κ)) = max

α∈Ps
T (α). (48)

The basic scheme of Algorithm 3 can be refined to incorporate various improve-
ments which make convergence much faster. For example, produced solutions often
happen to contain many insignificant weights α�, which results from a limited accuracy
of computations and the interruption of Algorithm 3 after a finite number of steps.
In practice, these weights may well be disregarded since setting them as zeros and
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Algorithm 3 Algorithm model for the restricted master problem.
Step 0 (Initialization)

Select weights α(0)
�

> 0, � = 1, . . . , s which determine the initial pmf pX (0) for which we must

have T (α(0)) > −∞, e.g., set α(0)
�
= 1/s, � = 1, . . . , s. Choose 0 < η � 1, a parameter used in the

stopping rule. Set κ = 0.
Step 1 (Termination check)

If

ψ(�,α(κ))
m

< 1+ η, � = 1, . . . , s, (46)

then STOP.
Step 2 (Multiplicative update)

Evaluate

α
(κ+1)
�

= α(κ)
�

ψ(�,α(κ))
m

, � = 1, . . . , s. (47)

Increment κ by one and go to Step 1.

distributing the sum of their values among the remaining weights [so as not to violate
(40)] involves a negligible change in the value of the performance measure T (α(κ)).
The sum of the weights removed can be distributed among the other weights for which
ψ(�,α(κ)) > m, and additionally, in a manner proportional to ψ(�,α(κ))−m.

Another improvement is due to Pronzato (2003) who proposed a simple method
to identify elements of Z(k+1) which do not contribute to the sought optimal con-
vex combination in co(Z(k+1)). It can be generalized to the general case considered
here and used during the search to discard such useless points ‘on the fly,’ thereby
substantially reducing the problem dimensionality.

5 Computational results

The following example serves as a vehicle for the display of some salient features
of the proposed approach. Consider simultaneous advection and diffusion of an air
pollutant over an urban area normalized to the unit square � = (0, 1)2. It is assumed
that the mean wind velocity over � can be approximated by υ = (υ1, υ2), where

υ1 = υ2 = 1
2
(x1 − x2)

2 − 1, (49)

i.e., the air moves with a constant speed along each straight line x2 = x1 + b, where
b ∈ [−1, 1], cf. Fig. 1.

In addition, we take into account an active source of pollution and reaction, which
leads to changes in the pollutant concentration y = y(x, t). The evolution of y over the
normalized observation interval T = (0, 1] is described by the following advection-
diffusion equation:

∂y(x, t)
∂t

+ ∇ · (υ(x)y(x, t)
) = ∇ · (a(x)∇y(x, t)

)+ f (x) in �× T (50)

subject to the boundary and initial conditions:
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Fig. 1 Domain � and the wind velocity field υ = (υ1, υ2)

∂y(x, t)
∂n

= 0 on � × T, (51)

y(x, 0) = 0 in �, (52)

where the term f (x) = exp
(−50‖x− c‖2) represents an active source of the pollutant

located at point c = (0.7, 0.7), and ∂y/∂n stands for the partial derivative of y with
respect to the outward normal to the boundary �. The assumed functional form of
the spatial-varying diffusion coefficient is

a(x) = θ1 + θ2x2
1 + θ3x2

2, (53)

so that the constant parameters θ1, θ2, and θ3 need estimation based on measurement
data from monitoring stations.

Given N prospective sites in � ∪ �, we aim at selecting their subset consisting of
the locations at which the measurements made by n available sensors would lead to
least-squares estimates of θ1, θ2, and θ3 characterized by a minimal volume of the
confidence ellipsoid. This task reduces to solving Problem P of Sect. 2.

Note that in the design, the elements of the sensitivity vector (8) at admissible
sites are indispensable in order to determine the matrices Mi in (12) which potentially
contribute to the FIM (11). Assuming the nominal values θ0

1 = 0.1, θ0
2 = θ0

3 = −0.02,
they can be obtained using the direct-differentiation approach (Uciński 2005; Sun
1994). Roughly speaking, this boils down to solution of the system of four PDEs in
which one equation constitutes the original state equation (50), and the other three
equations result from its differentiation with respect to θ1, θ2, and θ3, respectively. The
initial and Neumann boundary conditions for all the four equations are homogeneous
here. We solved this system of PDEs using some routines of the Matlab PDE toolbox
(COMSOL-AB 1995) for a spatial mesh composed of 3,200 triangles and 1,681 nodes.
Numerical integration required to evaluate matrices Mi was performed employing the
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trapezoidal rule for the time step equal to 1/80, based on the sensitivity vector g inter-
polated at the nodes representing admissible locations xi, cf. Appendix I in (Uciński
2005) for details. Despite the impossibility of employing the graphical user interface
of the toolbox (it is tailored to single PDEs, and not to systems of PDEs), we could
still solve the system of PDEs in question using command-line functions. The GUI
was applied here only to conveniently define the spatial domain and then to export
the resulting decomposed geometry matrix to Matlab’s workspace.

To provide insight into the performance of the presented approach, two scenarios
were considered in our simulation studies, namely the observations were assumed to
be taken at locations selected from among the elements of rectangular grids of sizes
21 × 21 nodes (N = 441 admissible sites) and 41 × 41 nodes (N = 1, 681 admissible
sites) with different numbers of allocated sensors. All procedures were implemented
entirely in Matlab7.1 and tested on a PC equipped with an Intel Centrino 1.73 GHz
processor and 1 GB RAM, running Windows XP.

The solution to (50)–(52) is presented in Fig. 2 where the process dynamics can
be easily observed. It can be seen that the cloud of pollutant spreads over the entire
domain, thereby reflecting the complex combination of diffusion and advection pro-
cesses, and follows the direction of the wind being the dominant transport factor.

A Matlab program was written to implement the recursive version of the DFBB
procedure embodied by Algorithm 1. For the implementation of its principal part,
which is the solution of the relaxed problem with the use of the SD scheme given in
Algorithm 2, the following setting was assumed:

• In order to solve the column generation problem in Step 1, the function linprog
from Matlab’s Optimization Toolbox (Math Works 2000) was used with the default
tolerance being set as 10−8.
• The accuracy of the solution of the relaxed problem (the termination check in

Step 2) was set on the level of ε = 5 · 10−5.
• The tolerance and the maximum number of iterations for the multiplicative algo-

rithm for solving the restricted master problem in Step 3 were set as η = 10−5 and
κmax = 1, 000, respectively.

Finally, to take full advantage of the efficient SD scheme performed at each node
of the BB tree, Algorithm 1 was extended to incorporate a rounding procedure after
solving the relaxed problem. Thus, this solution provides not only an upper bound to
the currently processed branch, but may also lead to a great improvement in the lower
bound LOWER. Intuitively, a proper way of rounding a relaxed solution is to choose
target sites for locating spare sensors so that they correspond to largest weights. In the
event that this choice is complicated by the presence of sites with identical weights,
the target sites are chosen randomly. The cost of such a procedure is comparable to
the effort of sorting the vector representing the relaxed solution. In such a manner, it
is possible to avoid descending to the bottom level of the BB tree in order to update
LOWER. Since in the case of medium and large-scale problems such a process costs
many recursive calls of Algorithm 1, the effort put to round relaxed solutions seems to
be insignificant and fully justified, as evidenced by numerous simulation experiments.

The D-optimal sensor configurations for different sizes of the grid and numbers
of allocated sensors are shown in Figs. 3 and 4. Each time, the computations were
started by randomly generating a guess at the sought solution in order to assign an
initial value to the global variable LOWER. The obtained locations of sensors per-
fectly retain the symmetry of the problem with respect to the line x2 = x1 and tend to
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Fig. 2 Concentration of the pollutant at consecutive time instants

form a pattern reflecting the areas of greatest changes in the pollutant concentration.
Surprisingly, the measurements in the closest vicinity of the pollution source are not
very attractive for parameter estimation. The intuition fails in this case and it is very
difficult to predict the solution when armed only with the experimenter’s experience.

The results concerning the algorithm performance are summarized in Table 1.
To make an informative comparison, the versions with and without rounding of the
relaxed solution are given. The number of RDFBB calls equals to one means that the
optimal solution is obtained just by rounding the fully relaxed problem. Although the
presented examples are rather medium-scale, we have to remember that in the worst
case (i.e., when the number of sensors is closest to half the number of available sites)
the cardinalities of the search spaces for the 441-point and 1,681-point grids reach
even 2.15 · 10131 and 2.09 · 10504, respectively. Examination of the data from Table 1
leads to interesting conclusions. Unexpectedly, with an increased number of sensors
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Fig. 3 D-optimal sensor positions (marked with open circles) for the 441-point uniform grid of
admissible sites (marked with dots) and various numbers of sensors

(and the size of the corresponding search space), the pruning process becomes more
efficient (only in the case of a finer grid without rounding we observed the influence
of the ‘curse of dimensionality’). This effect can be explained by observing that a
higher density of sensors leads to a better estimate of the lower bound to the optimal
value of the design criterion, which results in an increased efficiency of pruning and
whereupon the search is speeded up. Moreover, the increase in the sensor density
seems to make the rounded solution of the relaxed problem closer to the optimal
one in terms of the criterion value. Therefore, the influence of rounding cannot be
overestimated since in our example it significantly decreases the number of recursive
function calls and, surprisingly, a low number of sensors leads to a harder situation
from the computational point of view.
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Fig. 4 D-optimal sensor positions (marked with open circles) for the 1,681-point uniform grid of
admissible sites (marked with dots) and various numbers of sensors

6 Discussion and conclusions

We have addressed the problem of selecting optimal observation points in view of
accurate parameter estimation for parameter distributed systems, which stand here for
dynamical systems governed by partial differential equations. Although it has been
approached from various angles since the mid-1970s, there are still few systematic
and versatile methods for its solution. In the existing formulations, an optimal sen-
sor placement is thus computed as that which globally maximizes a criterion directly
connected with the expected quality of the parameter estimates. But then the key diffi-
culty becomes the large scale of the resulting global optimization problem, since the
monitoring networks encountered in process industry or environmental engineering
may often consist of several hundreds of stations. Obviously, this makes the exhaus-
tive search on a candidate-by-candidate basis practically intractable and creates a
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Table 1 Comparison of the algorithm performance for different scenarios (RP relaxed problem,
RDFBB recursive depth-first BB procedure)

observational grid: 21× 21 (441 admissible sites)

Number of sensors Without rounding of RP With rounding of RP

Number of
RDFBB calls

CPU time
[h : min : s]

Number of
RDFBB calls

CPU time
[h : min : s]

20 413 0 : 08 : 20.93 53 0 : 01 : 02.89
30 131 0 : 02 : 59.32 25 0 : 00 : 27.17
40 115 0 : 02 : 11.59 3 0 : 00 : 02.90
50 115 0 : 01 : 51.76 1 0 : 00 : 00.98
60 17 0 : 00 : 16.50 1 0 : 00 : 01.01
100 13 0 : 00 : 12.05 1 0 : 00 : 00.99

observational grid: 41× 41 (1,681 admissible sites)
50 1,267 1 : 36 : 36.70 37 0 : 02 : 22.38
80 183 0 : 12 : 58.09 1 0 : 00 : 02.74
100 163 0 : 10 : 37.07 1 0 : 00 : 02.86
200 261 0 : 09 : 41.80 1 0 : 00 : 02.26
500 339 0 : 10 : 25.20 1 0 : 00 : 02.37
800 439 0 : 14 : 48.14 1 0 : 00 : 02.36

need for techniques which would implement a guided search and have acceptable
performance.

We started from the most common formulation, in which the measurement system
has a finite number of sensor candidate positions and the aim is to select the best subset
of points of desired cardinality. Choosing the best subset translates to maximizing the
determinant of the Fisher information matrix associated with the estimated parame-
ters and fits into the framework of nonlinear 0–1 integer programming. The solution
of this combinatorial design problem using the BB method constitutes a quite natural
option, but the main problem when trying to implement it has been the lack of a
low-cost procedure to obtain upper bounds to the optimal values of the D-optimality
criterion. The main contribution of this paper consists in the development of an
original and efficient computational scheme to produce such bounds. This was possi-
ble by adapting a specialized multiplicative algorithm for determinant maximization,
which is in common use by statisticians concerned with optimum experimental design.
The link to plug this algorithm into the proposed scheme was a simplicial decompo-
sition being perfectly suited for large-scale problems which can be encountered here.
The idea of its application in the context of optimal sensor location for parameter esti-
mation is new. Consequently, the proposed method can be implemented with great
ease and our experience provides evidence that, with this tool, even large-scale design
problems can be solved using an off-the-shelf PC. A further significant speedup can
be achieved by employing a simple rounding heuristic, as described in Sect. 5.

As by-products of the process of constructing the ultimate algorithm, characteriza-
tions of the optimal solutions to specific subproblems discussed in Propositions 1 and
3 were obtained. In principle, they can be derived as particular cases of some general
results in optimum experimental design, but this would require from the reader flu-
ent knowledge of measure theory. Because of this, the corresponding proofs proceed
here independently on a quite elementary level, based on the Karush–Kuhn–Tucker
conditions. In this respect, the presented versions of both the proofs are new.
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Let us remark that an alternative approach to select a best n-element subset from
among a given N-element set of candidate sites could be to employ an exchange
algorithm. Typically, algorithms of this type begin with an n-point starting sensor con-
figuration which then sequentially evolves through addition of new elements selected
from among vacant sites and deletion of sites at which sensors have provisionally been
planned to reside, in an effort to improve the value of the adopted design criterion
(Meyer and Nachtsheim 1995). Accordingly, a one-point exchange procedure was
used in (Uciński 1999) and further developed in (Uciński and Patan 2002; Uciński
2005) in a sensor-network setting, based on the concept of replication-free designs
set forth by Fedorov (1989). A much more efficient extension of this idea could be to
adapt the fast algorithm based on multiple simultaneous exchanges, which was devel-
oped by Lam et al. (2002). A step in this direction was made by Liu et al. (2005) who
refined it and applied the resulting ‘sort-and-cut’ technique to solve an E-optimum
sensor selection problem. It is beyond doubt that this approach outperforms the BB
technique proposed here as far as the running time is concerned. On should note,
however, that exchange algorithms are heuristics and thus they are only capable of
finding globally competitive solutions (i.e., nearly optimal ones), with an explicit trade
of global optimality for speed. The approach presented here is superior in the sense
that it always produces global maxima and, what is more, does it within tolerable time.

Certainly, there is room for refinements and further theoretical developments. We
can mention the following points which are the matter of our current research:

• Optimization problems consisting in finding probability mass functions maximizing
various experimental design criteria were discussed by Boyd and Vandenberghe
(2004, p. 384), cf. also (Uciński 2005 p. 59). In particular, they cast the determinant
maximization as a quite specific convex extension of the semidefinite programming
problem and developed an interior-point algorithm (Vandenberghe et al. 1998)
which can basically be used here in lieu of the multiplicative algorithm solving
the restricted master problem. But due to its broad generality, it performs slightly
worse than Algorithm 3 which fully exploits the problem specificity. This difference
becomes rather striking if problems involving several hundreds of admissible sites
are to be solved. Nevertheless, semidefinite programming formulations of A- and
E-optimum design problems presented in (Boyd and Vandenberghe 2004; Vanden-
berghe and Boyd 1999) can be used as a fine starting point to extend the applicability
of the BB technique presented here to those criteria, too.
• The proposed simple branching rule for the binary BB tree can be refined by

incorporating a mechanism driving the search proces towards the most promising
branches in terms of the objective function or heuristics exploiting specific proper-
ties of the DPS in question.
• The column generation subproblem reduces to maximization of a linear function

over the intersection of a hyperplane and a box. With some additional efforts, this
specific form of the feasible set can be fully exploited to eliminate the need for a
sophisticated linear-programming solver. The algorithm developed in (D. Uciński
2006) for a constrained D-optimal design problem implements this idea and is
almost as simple as a closed-form solution. Our computational experience indi-
cates, however, that incorporation of this improvement in the BB scheme does not
yield a significant reduction in the time of execution of the resulting code.
• Since computing on clusters of PCs has become as common as computing on scien-

tific workstations had been a decade ago, we are currently implementing a parallel
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version of the BB application aimed at solving large-scale problems. This task is
facilitated by the specific structure of the proposed BB algorithm whose compo-
nents are particularly suited for parallelization.
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Appendix

A: Proof of Proposition 1

Problem R′(I0, I1) can be rewritten as follows: Find w ∈ R
q to minimize

Q̃(w) = − log det
(
G(w)

)
(1)

subject to the constraints
q∑

j=1

wj − r = 0, (2)

−wj ≤ 0, j = 1, . . . , q, (3)

wj − 1 ≤ 0, j = 1, . . . , q. (4)

Associating the dual variables

λ ∈ R, µj ∈ R+, νj ∈ R+, j = 1, . . . , q, (5)

with constraints (2), (3), and (4), respectively, we define the Lagrangian of (1)–(4) as

L(w, λ,µ, ν) = − log det
(
G(w)

)+ λ( q∑
j=1

wj − r
)
−

q∑
j=1

µjwj +
q∑

j=1

νj
(
wj − 1

)
. (6)

An easy computation shows that

∂L
∂wj
= −ϕ(j, w)+ λ− µj + νj. (7)

Let us examine the first-order Karush–Kuhn–Tucker (KKT) conditions for our
problem (Bertsekas 1999):

−ϕ(j, w)+ λ− µj + νj = 0, j = 1, . . . , q, (8)

µjwj = 0, j = 1, . . . , q, (9)

νj
(
wj − 1

) = 0, j = 1, . . . , q, (10)

µj ≥ 0, j = 1, . . . , q, (11)

νj ≥ 0, j = 1, . . . , q, (12)

0 ≤ wj ≤ 1, j = 1, . . . , q, (13)
q∑

j=1

wj = r. (14)
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For problems with constraints which are both linear and linearly independent, as
is the case here, the KKT conditions are necessary for optimality. Additionally, the
convexity of the objective function (1) implies that they also become sufficient. Con-
sequently, the optimality of w amounts to the existence of some values of λ, µj and
νj, j = 1, . . . , q, denoted by λ, µj and νj , j = 1, . . . , q, respectively, such that (8)–(14)
are satisfied.

Suppose that wj = 1 for some index j. Then from (9) it follows that µj = 0 and,
therefore, (8) reduces to

ϕ(j, w) = λ + νj ≥ λ, (15)

the last inequality owing to (12). In turn, on account of (10), the assumption wj = 0
yields νj = 0, and then (8) simplifies to

ϕ(j, w) = λ − µj ≤ λ, (16)

which is owing to (11). Finally, by (9) and (10), the assumption 0 < wj < 1 clearly
forces µj = νj = 0, for which (8) gives

ϕ(j, w) = λ, (17)

Conversely, having found w ∈ R
q and λ ∈ R for which (28) is fulfilled, we can

define

µj = max(λ − ϕ(j, w), 0), νj = max(ϕ(j, w)− λ, 0), i = 1, . . . , q, (18)

which guarantees the satisfaction of (8)–(14). This means that w is a KKT point and
this is equivalent to its global optimality.

B: Proof of Proposition 2

Observe that the following Löwner ordering holds true for any w = (w1, . . . , wq):

0 � G(w) = A+
q∑

j=1

wjSj � q
r

(
A+ r

q

q∑
j=1

Sj

)
= q

r
G(w̄). (19)

A fundamental property of the determinant is that it preserves this monotonicity
(Horn and Johnson 1986 Corr. 7.7.4), which gives

0 ≤ det
(
G(w)

) ≤ (q
r

)m
det

(
G(w̄)

)
. (20)

This makes our claim obvious.

C: Proof of Proposition 3

Problem PRMP can equivalently be formulated as follows: Find α ∈ R
s to minimize

T̃ (α) = − log det
(
H(α)

)
(21)
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subject to the constraints

s∑
�=1

α� − 1 = 0, (22)

−α� ≤ 0, � = 1, . . . , s. (23)

Characterization of its solution proceeds as follows. First, the Lagrangian is formed,

L(α, λ,µ) = − log det
(
H(α)

)+ λ( s∑
�=1

α� − 1
)
−

s∑
�=1

µ�α�, (24)

where λ ∈ R and µ� ∈ R+, � = 1, . . . , s are dual variables. It follows easily that

∂L
∂α�
= −ψ(�,α)+ λ− µ�. (25)

Next, it is observed that the first-order KKT conditions for (21)–(23) are

−ψ(�,α)+ λ− µ� = 0, � = 1, . . . , s, (26)

µ�α� = 0, � = 1, . . . , s, (27)

µ� ≥ 0, � = 1, . . . , s, (28)

α� ≥ 0, � = 1, . . . , s, (29)
s∑
�=1

α� = 1. (30)

The independence of s+ 1 linear constraints defined by (22) and (23) implies that
(26)–(30) are necessary for optimality. But they are also sufficient since the perfor-
mance measure (21) is convex. Accordingly, the optimality of α is equivalent to the
existence of some values of λ and µ�, � = 1, . . . , s, denoted by λ and µ�, � = 1, . . . , s,
respectively, such that (26)–(30) are satisfied.

The constant λ may be easily inferred from the KKT conditions. Indeed, multi-
plying each equation in (26) by α� , � = 1, . . . , s, respectively, and summing the results,
we get

−
s∑
�=1

α� trace
[
H−1(α)Q�

]+ λ s∑
�=1

α� −
s∑
�=1

α�µ

� = 0. (31)

But

s∑
�=1

α� trace
[
H−1(α)Q�

] = trace
[
H−1(α)H(α)

] = trace(Em) = m, (32)

which, taken in conjunction with (27) and (30), simplifies (31) to yield

λ = m. (33)

From this and (26), we conclude that

ψ(�,α) = m− µ� ≤ m, (34)
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the last inequality being a consequence of (28). Moreover, if α� > 0, then (27) implies
µ� = 0, i.e.,

ψ(�,α) = m. (35)

Conversely, if (44) is satisfied for some α ∈ Ps, then setting

λ = m, µ� = max(m− ψ(�,α), 0), � = 1, . . . , s (36)

gives a solution to the system (26)–(30). This shows that α is a KKT point.
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